Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.200
Filtrar
1.
J Transl Med ; 22(1): 349, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38610029

RESUMO

BACKGROUND: Chimeric antigen receptor T (CAR-T) cell therapy, as an emerging anti-tumor treatment, has garnered extensive attention in the study of targeted therapy of multiple tumor-associated antigens in hepatocellular carcinoma (HCC). However, the suppressive microenvironment and individual heterogeneity results in downregulation of these antigens in certain patients' cancer cells. Therefore, optimizing CAR-T cell therapy for HCC is imperative. METHODS: In this study, we administered FGFR4-ferritin (FGFR4-HPF) nanoparticles to the alpaca and constructed a phage library of nanobodies (Nbs) derived from alpaca, following which we screened for Nbs targeting FGFR4. Then, we conducted the functional validation of Nbs. Furthermore, we developed Nb-derived CAR-T cells and evaluated their anti-tumor ability against HCC through in vitro and in vivo validation. RESULTS: Our findings demonstrated that we successfully obtained high specificity and high affinity Nbs targeting FGFR4 after screening. And the specificity of Nbs targeting FGFR4 was markedly superior to their binding to other members of the FGFR family proteins. Furthermore, the Nb-derived CAR-T cells, targeting FGFR4, exhibited significantly enhanced anti-tumor efficacy in both experiments when in vitro and in vivo. CONCLUSIONS: In summary, the results of this study suggest that the CAR-T cells derived from high specificity and high affinity Nbs, targeting FGFR4, exhibited significantly enhanced anti-tumor efficacy in vitro and in vivo. This is an exploration of FGFR4 in the field of Nb-derived CAR-T cell therapy for HCC, holding promise for enhancing safety and effectiveness in the clinical treatment of HCC in the future.


Assuntos
Camelídeos Americanos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Receptores de Antígenos Quiméricos , Anticorpos de Domínio Único , Humanos , Animais , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Microambiente Tumoral
2.
J Immunother Cancer ; 12(4)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580333

RESUMO

BACKGROUND: The programmed cell death protein-1 (PD-1)/programmed death receptor ligand 1 (PD-L1) axis critically facilitates cancer cells' immune evasion. Antibody therapeutics targeting the PD-1/PD-L1 axis have shown remarkable efficacy in various tumors. Immuno-positron emission tomography (ImmunoPET) imaging of PD-L1 expression may help reshape solid tumors' immunotherapy landscape. METHODS: By immunizing an alpaca with recombinant human PD-L1, three clones of the variable domain of the heavy chain of heavy-chain only antibody (VHH) were screened, and RW102 with high binding affinity was selected for further studies. ABDRW102, a VHH derivative, was further engineered by fusing RW102 with the albumin binder ABD035. Based on the two targeting vectors, four PD-L1-specific tracers ([68Ga]Ga-NOTA-RW102, [68Ga]Ga-NOTA-ABDRW102, [64Cu]Cu-NOTA-ABDRW102, and [89Zr]Zr-DFO-ABDRW102) with different circulation times were developed. The diagnostic efficacies were thoroughly evaluated in preclinical solid tumor models, followed by a first-in-human translational investigation of [68Ga]Ga-NOTA-RW102 in patients with non-small cell lung cancer (NSCLC). RESULTS: While RW102 has a high binding affinity to PD-L1 with an excellent KD value of 15.29 pM, ABDRW102 simultaneously binds to human PD-L1 and human serum albumin with an excellent KD value of 3.71 pM and 3.38 pM, respectively. Radiotracers derived from RW102 and ABDRW102 have different in vivo circulation times. In preclinical studies, [68Ga]Ga-NOTA-RW102 immunoPET imaging allowed same-day annotation of differential PD-L1 expression with specificity, while [64Cu]Cu-NOTA-ABDRW102 and [89Zr]Zr-DFO-ABDRW102 enabled longitudinal visualization of PD-L1. More importantly, a pilot clinical trial shows the safety and diagnostic value of [68Ga]Ga-NOTA-RW102 immunoPET imaging in patients with NSCLCs and its potential to predict immune-related adverse effects following PD-L1-targeted immunotherapies. CONCLUSIONS: We developed and validated a series of PD-L1-targeted tracers. Initial preclinical and clinical evidence indicates that immunoPET imaging with [68Ga]Ga-NOTA-RW102 holds promise in visualizing differential PD-L1 expression, selecting patients for PD-L1-targeted immunotherapies, and monitoring immune-related adverse effects in patients receiving PD-L1-targeted treatments. TRIAL REGISTRATION NUMBER: NCT06165874.


Assuntos
Antígeno B7-H1 , Carcinoma Pulmonar de Células não Pequenas , Compostos Heterocíclicos com 1 Anel , Neoplasias Pulmonares , Anticorpos de Domínio Único , Humanos , Antígeno B7-H1/efeitos dos fármacos , Antígeno B7-H1/metabolismo , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Radioisótopos de Gálio , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Receptor de Morte Celular Programada 1 , Anticorpos de Domínio Único/farmacologia , Anticorpos de Domínio Único/uso terapêutico
3.
Front Immunol ; 15: 1328306, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590528

RESUMO

CD39 is the major enzyme controlling the levels of extracellular adenosine triphosphate (ATP) via the stepwise hydrolysis of ATP to adenosine diphosphate (ADP) and adenosine monophosphate (AMP). As extracellular ATP is a strong promoter of inflammation, monoclonal antibodies (mAbs) blocking CD39 are utilized therapeutically in the field of immune-oncology. Though anti-CD39 mAbs are highly specific for their target, they lack deep penetration into the dense tissue of solid tumors, due to their large size. To overcome this limitation, we generated and characterized nanobodies that targeted and blocked human CD39. From cDNA-immunized alpacas we selected 16 clones from seven nanobody families that bind to two distinct epitopes of human CD39. Among these, clone SB24 inhibited the enzymatic activity of CD39. Of note, SB24 blocked ATP degradation by both soluble and cell surface CD39 as a 15kD monomeric nanobody. Dimerization via fusion to an immunoglobulin Fc portion further increased the blocking potency of SB24 on CD39-transfected HEK cells. Finally, we confirmed the CD39 blocking properties of SB24 on human PBMCs. In summary, SB24 provides a new small biological antagonist of human CD39 with potential application in cancer therapy.


Assuntos
Anticorpos de Domínio Único , Humanos , Anticorpos de Domínio Único/farmacologia , Trifosfato de Adenosina/metabolismo , Monofosfato de Adenosina , Difosfato de Adenosina/metabolismo
4.
Biochem Biophys Res Commun ; 709: 149839, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38564943

RESUMO

Single-domain VHH antibody is regarded as one of the promising antibody classes for therapeutic and diagnostic applications. VHH antibodies have amino acids in framework region 2 that are distinct from those in conventional antibodies, such as the Val37Phe/Tyr (V37F/Y) substitution. Correlations between the residue type at position 37 and the conformation of the CDR3 in VHH antigen recognition have been previously reported. However, few studies focused on the meaning of harboring two residue types in position 37 of VHH antibodies, and the concrete roles of Y37 have been little to be elucidated. Here, we investigated the functional states of position 37 in co-crystal structures and performed analyses of three model antibodies with either F or Y at position 37. Our analysis indicates that Y at position 37 enhances the dissociation rate, which is highly correlated with drug efficacy. Our findings help to explain the molecular mechanisms that distinguish VHH antibodies from conventional antibodies.


Assuntos
Antígenos de Grupos Sanguíneos , Camelídeos Americanos , Anticorpos de Domínio Único , Animais , Anticorpos de Domínio Único/química , Sequência de Aminoácidos , Anticorpos
5.
Molecules ; 29(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38611711

RESUMO

The injudicious usage of antibiotics during infections caused by Gram-negative bacteria leads to the emergence of ß-lactamases. Among them, the NDM-1 enzyme poses a serious threat to human health. Developing new antibiotics or inhibiting ß-lactamases might become essential to reduce and prevent bacterial infections. Nanobodies (Nbs), the smallest antigen-binding single-domain fragments derived from Camelidae heavy-chain-only antibodies, targeting enzymes, are innovative alternatives to develop effective inhibitors. The biopanning of an immune VHH library after phage display has helped to retrieve recombinant antibody fragments with high inhibitory activity against recombinant-NDM-1 enzyme. Nb02NDM-1, Nb12NDM-1, and Nb17NDM-1 behaved as uncompetitive inhibitors against NDM-1 with Ki values in the nM range. Remarkably, IC50 values of 25.0 nM and 8.5 nM were noted for Nb02NDM-1 and Nb17NDM-1, respectively. The promising inhibition of NDM-1 by Nbs highlights their potential application in combating particular Gram-negative infections.


Assuntos
Camelus , Anticorpos de Domínio Único , Humanos , Animais , Anticorpos de Domínio Único/farmacologia , beta-Lactamases , Antibacterianos/farmacologia , Cadeias Pesadas de Imunoglobulinas
6.
BMC Bioinformatics ; 25(1): 122, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515052

RESUMO

BACKGROUND: Nanobodies, also known as VHH or single-domain antibodies, are unique antibody fragments derived solely from heavy chains. They offer advantages of small molecules and conventional antibodies, making them promising therapeutics. The paratope is the specific region on an antibody that binds to an antigen. Paratope prediction involves the identification and characterization of the antigen-binding site on an antibody. This process is crucial for understanding the specificity and affinity of antibody-antigen interactions. Various computational methods and experimental approaches have been developed to predict and analyze paratopes, contributing to advancements in antibody engineering, drug development, and immunotherapy. However, existing predictive models trained on traditional antibodies may not be suitable for nanobodies. Additionally, the limited availability of nanobody datasets poses challenges in constructing accurate models. METHODS: To address these challenges, we have developed a novel nanobody prediction model, named NanoBERTa-ASP (Antibody Specificity Prediction), which is specifically designed for predicting nanobody-antigen binding sites. The model adopts a training strategy more suitable for nanobodies, based on an advanced natural language processing (NLP) model called BERT (Bidirectional Encoder Representations from Transformers). To be more specific, the model utilizes a masked language modeling approach named RoBERTa (Robustly Optimized BERT Pretraining Approach) to learn the contextual information of the nanobody sequence and predict its binding site. RESULTS: NanoBERTa-ASP achieved exceptional performance in predicting nanobody binding sites, outperforming existing methods, indicating its proficiency in capturing sequence information specific to nanobodies and accurately identifying their binding sites. Furthermore, NanoBERTa-ASP provides insights into the interaction mechanisms between nanobodies and antigens, contributing to a better understanding of nanobodies and facilitating the design and development of nanobodies with therapeutic potential. CONCLUSION: NanoBERTa-ASP represents a significant advancement in nanobody paratope prediction. Its superior performance highlights the potential of deep learning approaches in nanobody research. By leveraging the increasing volume of nanobody data, NanoBERTa-ASP can further refine its predictions, enhance its performance, and contribute to the development of novel nanobody-based therapeutics. Github repository: https://github.com/WangLabforComputationalBiology/NanoBERTa-ASP.


Assuntos
Anticorpos de Domínio Único , Sítios de Ligação de Anticorpos , Anticorpos de Domínio Único/química , Anticorpos , Sítios de Ligação , Especificidade de Anticorpos
7.
J Med Virol ; 96(3): e29528, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38501378

RESUMO

The emerging Omicron subvariants have a remarkable ability to spread and escape nearly all current monoclonal antibody (mAb) treatments. Although the virulence of SARS-CoV-2 has now diminished, it remains a significant threat to public health due to its high transmissibility and susceptibility to mutation. Therefore, it is urgent to develop broad-acting and potent therapeutics targeting current and emerging Omicron variants. Here, we identified a panel of Omicron BA.1 spike receptor-binding domain (RBD)-targeted nanobodies (Nbs) from a naive alpaca VHH library. This panel of Nbs exhibited high binding affinity to the spike RBD of wild-type, Alpha B.1.1.7, Beta B.1.351, Delta plus, Omicron BA.1, and BA.2. Through multivalent Nb construction, we obtained a subpanel of ultrapotent neutralizing Nbs against Omicron BA.1, BA.2, BF.7 and even emerging XBB.1.5, and XBB.1.16 pseudoviruses. Protein structure prediction and docking analysis showed that Nb trimer 2F2E5 targets two independent RBD epitopes, thus minimizing viral escape. Taken together, we obtained a panel of broad and ultrapotent neutralizing Nbs against Omicron BA.1, Omicron BA.2, BF.7, XBB.1.5, and XBB.1.16. These multivalent Nbs hold great promise for the treatment against SARS-CoV-2 infection and could possess a superwide neutralizing breadth against novel omicron mutants or recombinants.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos de Domínio Único , Humanos , Anticorpos de Domínio Único/genética , Anticorpos Monoclonais , Epitopos , Anticorpos Neutralizantes , Anticorpos Antivirais
8.
Life Sci ; 345: 122593, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38554946

RESUMO

Targeted therapy and imaging are the most popular techniques for the intervention and diagnosis of cancer. A potential therapeutic target for the treatment of cancer is the epidermal growth factor receptor (EGFR), primarily for glioblastoma, lung, and breast cancer. Over-production of ligand, transcriptional up-regulation due to autocrine/paracrine signalling, or point mutations at the genomic locus may contribute to the malfunction of EGFR in malignancies. This exploit makes use of EGFR, an established biomarker for cancer diagnostics and treatment. Despite considerable development in the last several decades in making EGFR inhibitors, they are still not free from limitations like toxicity and a short serum half-life. Nanobodies and antibodies share similar binding properties, but nanobodies have the additional advantage that they can bind to antigenic epitopes deep inside the target that conventional antibodies are unable to access. For targeted therapy, anti-EGFR nanobodies can be conjugated to various molecules such as drugs, peptides, toxins and photosensitizers. These nanobodies can be designed as novel immunoconjugates using the universal modular antibody-based platform technology (UniCAR). Furthermore, Anti-EGFR nanobodies can be expressed in neural stem cells and visualised by effective fluorescent and radioisotope labelling.


Assuntos
Glioblastoma , Anticorpos de Domínio Único , Humanos , Anticorpos de Domínio Único/genética , Medicina de Precisão , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Anticorpos
9.
Nano Lett ; 24(13): 3914-3921, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38513214

RESUMO

Establishing a multivalent interface between the biointerface of a living system and electronic device is vital to building intelligent bioelectronic systems. How to achieve multivalent binding with spatial tolerance at the nanoscale remains challenging. Here, we report an antibody nanotweezer that is a self-adaptive bivalent nanobody enabling strong and resilient binding between transistor and envelope proteins at biointerfaces. The antibody nanotweezer is constructed by a DNA framework, where the nanoscale patterning of nanobodies along with their local spatial adaptivity enables simultaneous recognition of target epitopes without binding stress. As such, effective binding affinity increases by 1 order of magnitude compared with monovalent antibody. The antibody nanotweezer operating on transistor offers enhanced signal transduction, which is implemented to detect clinical pathogens, showing ∼100% overall agreement with PCR results. This work provides a perspective of engineering multivalent interfaces between biosystems with solid-state devices, holding great potential for organoid intelligence on a chip.


Assuntos
Anticorpos de Domínio Único , Epitopos , Transdução de Sinais
10.
Nat Commun ; 15(1): 2414, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499587

RESUMO

Type IV pili (T4P) are prevalent, polymeric surface structures in pathogenic bacteria, making them ideal targets for effective vaccines. However, bacteria have evolved efficient strategies to evade type IV pili-directed antibody responses. Neisseria meningitidis are prototypical type IV pili-expressing Gram-negative bacteria responsible for life threatening sepsis and meningitis. This species has evolved several genetic strategies to modify the surface of its type IV pili, changing pilin subunit amino acid sequence, nature of glycosylation and phosphoforms, but how these modifications affect antibody binding at the structural level is still unknown. Here, to explore this question, we determine cryo-electron microscopy (cryo-EM) structures of pili of different sequence types with sufficiently high resolution to visualize posttranslational modifications. We then generate nanobodies directed against type IV pili which alter pilus function in vitro and in vivo. Cyro-EM in combination with molecular dynamics simulation of the nanobody-pilus complexes reveals how the different types of pili surface modifications alter nanobody binding. Our findings shed light on the impressive complementarity between the different strategies used by bacteria to avoid antibody binding. Importantly, we also show that structural information can be used to make informed modifications in nanobodies as countermeasures to these immune evasion mechanisms.


Assuntos
Anticorpos de Domínio Único , Microscopia Crioeletrônica , Anticorpos de Domínio Único/metabolismo , Fímbrias Bacterianas/metabolismo , Proteínas de Fímbrias/metabolismo , Sequência de Aminoácidos
11.
Infect Immun ; 92(4): e0008424, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38470113

RESUMO

Camelid-derived, single-domain antibodies (VHHs) have proven to be extremely powerful tools in defining the antigenic landscape of immunologically heterogeneous surface proteins. In this report, we generated a phage-displayed VHH library directed against the candidate Lyme disease vaccine antigen, outer surface protein A (OspA). Two alpacas were immunized with recombinant OspA serotype 1 from Borrelia burgdorferi sensu stricto strain B31, in combination with the canine vaccine RECOMBITEK Lyme containing lipidated OspA. The phage library was subjected to two rounds of affinity enrichment ("panning") against recombinant OspA, yielding 21 unique VHHs within two epitope bins, as determined through competition enzyme linked immunosorbent assays (ELISAs) with a panel of OspA-specific human monoclonal antibodies. Epitope refinement was conducted by hydrogen exchange-mass spectrometry. Six of the monovalent VHHs were expressed as human IgG1-Fc fusion proteins and shown to have functional properties associated with protective human monoclonal antibodies, including B. burgdorferi agglutination, outer membrane damage, and complement-dependent borreliacidal activity. The VHHs displayed unique reactivity profiles with the seven OspA serotypes associated with B. burgdorferi genospecies in the United States and Europe consistent with there being unique epitopes across OspA serotypes that should be considered when designing and evaluating multivalent Lyme disease vaccines.


Assuntos
Lipoproteínas , Doença de Lyme , Anticorpos de Domínio Único , Animais , Cães , Humanos , Vacinas contra Doença de Lyme , Epitopos , Anticorpos Antibacterianos , Vacinas Bacterianas , Proteínas da Membrana Bacteriana Externa , Doença de Lyme/prevenção & controle , Antígenos de Superfície , Anticorpos Monoclonais
12.
Bioconjug Chem ; 35(3): 389-399, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38470611

RESUMO

The Mesenchymal Epithelial Transition (MET) receptor tyrosine kinase is upregulated or mutated in 5% of non-small-cell lung cancer (NSCLC) patients and overexpressed in multiple other cancers. We sought to develop a novel single-domain camelid antibody with high affinity for MET that could be used to deliver conjugated payloads to MET expressing cancers. From a naïve camelid variable-heavy-heavy (VHH) domain phage display library, we identified a VHH clone termed 1E7 that displayed high affinity for human MET and was cross-reactive with MET across multiple species. When expressed as a bivalent human Fc fusion protein, 1E7-Fc was found to selectively bind to EBC-1 (MET amplified) and UW-Lung 21 (MET exon 14 mutated) cell lines by flow cytometry and immunofluorescence imaging. Next, we investigated the ability of [89Zr]Zr-1E7-Fc to detect MET expression in vivo by PET/CT imaging. [89Zr]Zr-1E7-Fc demonstrated rapid localization and high tumor uptake in both xenografts with a %ID/g of 6.4 and 5.8 for EBC-1 and UW-Lung 21 at 24 h, respectively. At the 24 h time point, clearance from secondary and nontarget tissues was also observed. Altogether, our data suggest that 1E7-Fc represents a platform technology that can be employed to potentially both image and treat MET-altered NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Anticorpos de Domínio Único , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Tomografia por Emissão de Pósitrons/métodos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Linhagem Celular Tumoral
13.
Methods Mol Biol ; 2754: 131-146, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512665

RESUMO

Tau protein was extensively studied using nuclear magnetic resonance spectroscopy, providing a powerful way to determine interaction sites between Tau and partner proteins. Here we used this analytical tool to describe the epitopes of Tau-specific VHHs (variable domain of the heavy chain of the heavy chain-only antibodies, aka nanobodies) selected from a synthetic library. An in vitro Tau aggregation assay was subsequently used as a functional screen to check VHH efficacy as aggregation inhibitors. We have observed a correlation between the targeted epitope and the aggregation-inhibition capacity of a series of Tau-specific VHHs.


Assuntos
Anticorpos de Domínio Único , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/química , Proteínas tau/genética , Epitopos , Cadeias Pesadas de Imunoglobulinas/química , Biblioteca Gênica
14.
Breast Cancer Res ; 26(1): 40, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459598

RESUMO

BACKGROUND: 99mTc radiolabeled nanobody NM-02 (99mTc-NM-02) is a novel single photon emission computed tomography (SPECT) probe with a high affinity and specificity for human epidermal growth factor receptor 2 (HER2). In this study, a clinical imaging trial was conducted to investigate the relationship between 99mTc-NM-02 uptake and HER2 expression in patients with breast cancer. METHODS: Thirty patients with pathologically confirmed breast cancer were recruited and imaged with both 99mTc-NM-02 SPECT/computed tomography (CT) and 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/CT. According to the treatment conditions before recruitment, patients were divided into two groups, the newly diagnosed group (n = 24) and the treated group (n = 6). The maximal standard uptake value (SUVmax) of 18F-FDG and SUVmax and mean SUV (SUVmean) of 99mTc-NM-02 in the lesions were determined to analyze the relationship with HER2 expression. RESULTS: No meaningful relationship was observed between 18F-FDG uptake and HER2 expression in 30 patients with breast cancer. 99mTc-NM-02 uptake was positively correlated with HER2 expression in the newly diagnosed group, but no correlation was observed in the treated group. 99mTc-NM-02 uptake in HER2-positive lesions was lower in those with effective HER2-targeted therapy compared with the newly diagnosed group. 99mTc-NM-02 SPECT/CT detected brain and bone metastases of breast cancer with a different imaging pattern from 18F-FDG PET/CT. 99mTc-NM-02 showed no non-specific uptake in inflamed tissues and revealed intra- and intertumoral HER2 heterogeneity by SPECT/CT imaging in 9 of the 30 patients with breast cancer. CONCLUSIONS: 99mTc-NM-02 SPECT/CT has the potential for visualizing whole-body HER2 overexpression in untreated patients, making it a promising method for HER2 assessment in patients with breast cancer. TRIAL REGISTRATION: NCT04674722, Date of registration: December 19, 2020.


Assuntos
Neoplasias Ósseas , Neoplasias da Mama , Receptor ErbB-2 , Feminino , Humanos , Neoplasias Ósseas/secundário , Neoplasias da Mama/diagnóstico por imagem , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons/métodos , Receptor ErbB-2/imunologia , Receptor ErbB-2/metabolismo , Anticorpos de Domínio Único
15.
Biosensors (Basel) ; 14(3)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38534253

RESUMO

The global challenges posed by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic have underscored the critical importance of innovative and efficient control systems for addressing future pandemics. The most effective way to control the pandemic is to rapidly suppress the spread of the virus through early detection using a rapid, accurate, and easy-to-use diagnostic platform. In biosensors that use bioprobes, the binding affinity of molecular recognition elements (MREs) is the primary factor determining the dynamic range of the sensing platform. Furthermore, the sensitivity relies mainly on bioprobe quality with sufficient functionality. This comprehensive review investigates aptamers and nanobodies recently developed as advanced MREs for SARS-CoV-2 diagnostic and therapeutic applications. These bioprobes might be integrated into organic bioelectronic materials and devices, with promising enhanced sensitivity and specificity. This review offers valuable insights into advancing biosensing technologies for infectious disease diagnosis and treatment using aptamers and nanobodies as new bioprobes.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , COVID-19 , Anticorpos de Domínio Único , Humanos , SARS-CoV-2 , Teste para COVID-19
16.
J Pediatr Hematol Oncol ; 46(3): e220-e222, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38447071

RESUMO

Acquired thrombotic thrombocytopenic (aTTP) purpura is a life-threatening condition that can lead to devastating thromboembolic events. Recently, caplacizumab has been shown to rapidly restore platelet numbers and reduce the risk of severe end-organ damage when added to plasma exchanges (PEXs) and immunosuppression (IST). Here, we report the outcomes in 3 children with aTTP who were treated with caplacizumab in combination with PEXs and IST. In all 3 patients, platelet count increased to >15,000/mm 3 in 24 h and normalized on day 4, whereas normalization of ADAMTS13 activity >50% and elimination of the inhibitor was achieved after 18 to 89 days. Epistaxis was observed in 2 patients and was the only side effect related to caplacizumab. Caplacizumab is a promising agent for first-line treatment of children with aTTP.


Assuntos
Púrpura Trombocitopênica Trombótica , Anticorpos de Domínio Único , Criança , Humanos , Púrpura Trombocitopênica Trombótica/tratamento farmacológico , Troca Plasmática , Fator de von Willebrand , Terapia de Imunossupressão , Proteína ADAMTS13
17.
Clin Appl Thromb Hemost ; 30: 10760296241241525, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38523315

RESUMO

European real-world data indicate that front-line treatment with caplacizumab is associated with improved clinical outcomes compared with delayed caplacizumab treatment. The objective of the study was to describe the characteristics, treatment patterns, and outcomes in hospitalized patients with an immune-mediated thrombotic thrombocytopenic purpura (iTTP) episode treated with front-line versus delayed caplacizumab in the US. This retrospective cohort analysis of a US hospital database included adult patients (≥18 years) with an acute iTTP episode (a diagnosis of thrombotic microangiopathy and ≥1 therapeutic plasma exchange [TPE] procedure) from January 21, 2019, to February 28, 2021. Unadjusted baseline characteristics, treatment patterns, healthcare resource utilization, and costs were compared between patients who received front-line versus delayed (<2 vs ≥2 days after TPE initiation) caplacizumab treatment. Out of 39 patients, 16 (41.0%) received front-line and 23 (59.0%) received delayed treatment with caplacizumab. Baseline characteristics and symptoms were similar between the two groups. Patients who received front-line caplacizumab treatment had significantly fewer TPE administrations (median: 5.0 vs 12.0); and a significantly shorter hospital stay (median: 9.0 days vs 16.0 days) than patients receiving delayed caplacizumab therapy. Both of these were significantly lower in comparison of means (t-test P < .01). Median inpatient costs (inclusive of caplacizumab costs) were 54% higher in the delayed treated patients than in the front-line treated patients (median: $112 711 vs $73 318). TPE-specific cost was lower in the front-line treated cohort (median: $6 989 vs $10 917). In conclusion, front-line treatment with caplacizumab had shorter hospitalizations, lower healthcare resource utilization, and lower costs than delayed caplacizumab treatment after TPE therapy.


Assuntos
Púrpura Trombocitopênica Idiopática , Púrpura Trombocitopênica Trombótica , Anticorpos de Domínio Único , Trombose , Adulto , Humanos , Púrpura Trombocitopênica Trombótica/tratamento farmacológico , Estudos Retrospectivos , Anticorpos de Domínio Único/efeitos adversos , Púrpura Trombocitopênica Idiopática/tratamento farmacológico , Troca Plasmática , Trombose/tratamento farmacológico , Proteína ADAMTS13 , Hospitais
18.
Methods Mol Biol ; 2774: 303-314, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38441773

RESUMO

Chromobodies are nanobodies genetically fused to fluorescent proteins, which were developed to visualize endogenous intracellular antigens. These versatile bioimaging nanotools can also be used to detect cell surface epitopes, and we describe here how we use them as an alternative to conjugated antibodies. This way, we routinely test the binding efficiency of nanobodies for their cognate cell surface antigens, before integrating them as sensing domains into complex synthetic receptor architectures.


Assuntos
Anticorpos de Domínio Único , Epitopos , Anticorpos , Antígenos de Superfície , Membrana Celular
19.
Front Immunol ; 15: 1368586, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550583

RESUMO

MICA and MICB are Class I MHC-related glycoproteins that are upregulated on the surface of cells in response to stress, for instance due to infection or malignant transformation. MICA/B are ligands for NKG2D, an activating receptor on NK cells, CD8+ T cells, and γδ T cells. Upon engagement of MICA/B with NKG2D, these cytotoxic cells eradicate MICA/B-positive targets. MICA is frequently overexpressed on the surface of cancer cells of epithelial and hematopoietic origin. Here, we created nanobodies that recognize MICA. Nanobodies, or VHHs, are the recombinantly expressed variable regions of camelid heavy chain-only immunoglobulins. They retain the capacity of antigen recognition but are characterized by their stability and ease of production. The nanobodies described here detect surface-disposed MICA on cancer cells in vitro by flow cytometry and can be used therapeutically as nanobody-drug conjugates when fused to the Maytansine derivative DM1. The nanobody-DM1 conjugate selectively kills MICA positive tumor cells in vitro.


Assuntos
Neoplasias , Anticorpos de Domínio Único , Humanos , Linfócitos T CD8-Positivos , Anticorpos de Domínio Único/uso terapêutico , Antígenos de Histocompatibilidade Classe I , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Neoplasias/diagnóstico , Neoplasias/terapia , Imunoterapia
20.
Protein Expr Purif ; 218: 106441, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38367654

RESUMO

Nanobodies (Nbs) represent a class of single-domain antibodies with great potential application value across diverse biotechnology fields, including therapy and diagnostics. Thymic Stromal Lymphopoietin (TSLP) is an epithelial cell-derived cytokine, playing a crucial role in the regulation of type 2 immune responses at barrier surfaces such as skin and the respiratory/gastrointestinal tract. In this study, a method for the expression and purification of anti-TSLP nanobody (Nb3341) was established at 7 L scale and subsequently scaled up to 100 L scale. Key parameters, including induction temperature, methanol feed and induction pH were identified as key factors by Plackett-Burman design (PBD) and were optimized in 7 L bioreactor, yielding optimal values of 24 °C, 8.5 mL/L/h and 6.5, respectively. Furthermore, Diamond Mix-A and Diamond MMC were demonstrated to be the optimal capture and polishing resins. The expression and purification process of Nb3341 at 100L scale resulted in 22.97 g/L titer, 98.7% SEC-HPLC purity, 95.7% AEX-HPLC purity, 4 ppm of HCP content and 1 pg/mg of HCD residue. The parameters of the scaling-up process were consistent with the results of the optimized process, further demonstrating the feasibility and stability of this method. This study provides a highly promising and competitive approach for transitioning from laboratory-scale to commercial production-scale of nanobodies.


Assuntos
Anticorpos de Domínio Único , Linfopoietina do Estroma do Timo , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/metabolismo , Citocinas/metabolismo , Células Epiteliais , Diamante/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...